Search results for "Multi-subject fMRI data"

showing 2 items of 2 documents

Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint

2022

Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI dat…

Rank (linear algebra)Computer scienceMatrix normlow-rankmatrix decompositionsymbols.namesaketoiminnallinen magneettikuvausOrthogonalitytensorsTensor (intrinsic definition)Kronecker deltaTucker decompositionHumansElectrical and Electronic Engineeringcore tensorsparsity constraintRadiological and Ultrasound Technologybusiness.industrysignaalinkäsittelyfeature extractionsparse matricesBrainPattern recognitionbrain modelingMagnetic Resonance Imagingfunctional magnetic resonance imagingComputer Science ApplicationsConstraint (information theory)data modelssymbolsNoise (video)Artificial intelligencebusinessmulti-subject fMRI dataSoftwareAlgorithmsTucker decomposition
researchProduct

Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition

2014

Canonical polyadic decomposition (CPD) may face a local optimal problem when analyzing multi-subject fMRI data with inter-subject variability. Beckmann and Smith proposed a tensor PICA approach that incorporated an independence constraint to the spatial modality by combining CPD with ICA, and alleviated the problem of inter-subject spatial map (SM) variability.This study extends tensor PICA to incorporate additional inter-subject time course (TC) variability and to connect CPD and ICA in a new way. Assuming multiple subjects share common TCs but with different time delays, we accommodate subject-dependent TC delays into the CP model based on the idea of shift-invariant CP (SCP). We use ICA …

Independent component analysis (ICA)Speech recognitionModels NeurologicalMotor ActivityNeuropsychological TestsInter-subject variabilityta3112TimeMulti-subject fMRI dataFingersHumansCanonical polyadic decomposition (CPD)Computer SimulationMotor activityInvariant (mathematics)ta217ta113Brain MappingShift-invariant CP (SCP)General NeuroscienceBrainMagnetic Resonance ImagingIndependent component analysisAuditory PerceptionTensor PICASpatial mapsPsychologyAlgorithmJournal of Neuroscience Methods
researchProduct